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The title compound, C20H14N2, comprises two crystallogra-

phically independent centrosymmetric molecules (A and B)

with different conformations due to the disorder of molecule

B. The whole of molecule B is disordered over two sets of

positions, corresponding to a 180� rotation of the molecule,

with a site-occupancy ratio of 0.780 (6):0.220 (6). The minor

component of the disordered part in B has the same

configuration as molecule A, but the major component is

different. The dihedral angle between the planes of molecule

A and molecule B (major component) is 63.22 (3)�. The crystal

structure is stabilized by intermolecular C—H� � �� inter-

actions.

Related literature

For the biological activities, molecular recognition and cata-

lysis see, for example: Fournet et al. (2003); Yamada et al.,

(1981); Goswami & Mahapatra (1998); Goswami et al. (1989).

Experimental

Crystal data

C20H14N2

Mr = 282.33
Monoclinic, P21=n

a = 15.6378 (2) Å
b = 6.0798 (1) Å
c = 16.0860 (2) Å

� = 108.879 (1)�

V = 1447.10 (4) Å3

Z = 4
Mo K� radiation

� = 0.08 mm�1

T = 100.0 (1) K
0.34 � 0.33 � 0.09 mm

Data collection

Bruker APEXII CCD area-detector
diffractometer

Absorption correction: multi-scan
(SADABS; Bruker, 2005)
Tmin = 0.863, Tmax = 0.993

12910 measured reflections
3317 independent reflections
2476 reflections with I > 2�(I)
Rint = 0.030

Refinement

R[F 2 > 2�(F 2)] = 0.040
wR(F 2) = 0.102
S = 1.04
3317 reflections

245 parameters
H-atom parameters constrained
��max = 0.25 e Å�3

��min = �0.17 e Å�3

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C2A—H2AA� � �Cg1i 0.93 2.77 3.3409 (14) 121
C6A—H6AA� � �Cg2ii 0.93 2.65 3.5328 (18) 159
C4B—H4B� � �Cg3iii 0.93 2.85 3.376 (12) 116
C6A—H6AA� � �Cg3iv 0.93 2.76 3.613 (10) 152

Symmetry codes: (i) �xþ 1
2; yþ 1

2;�zþ 1
2; (ii) x� 3

2;�y� 1
2; z� 1

2; (iii)
x � 1

2;�yþ 1
2; z� 1

2; (iv) �x þ 1
2; y� 3

2;�zþ 1
2. Cg1, Cg2 and Cg3 are the centroids of

the C3A–C8A, N1B/C8B/C3B/C2B/C1B/C9B and N1C/C8C/C3C/C2C/C1C/C9C rings,
respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT

(Bruker, 2005); data reduction: SAINT; program(s) used to solve

structure: SHELXTL (Sheldrick, 2008); program(s) used to refine

structure: SHELXTL; molecular graphics: SHELXTL; software used

to prepare material for publication: SHELXTL and PLATON (Spek,

2003).
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1,2-Di-2-quinolylethene

H.-K. Fun, R. Kia, A. C. Maity, R. Chakrabarty and S. Goswami

Comment

Alkene or alkyne substituted quinolines are important as they exhibit significant activities against HTLV-1 transformed cells
and also show the efficiency of these compounds for the treatment of ATLL (Fournet et al., 2003).

The benzylic carbon-carbon coupling reactions of benzylic halides catalyzed by CoI(PPh3)3Cl and also the synthesis of

diaryl ethylene have been reported (Yamada et al., 1981). The same reaction of functionalised benzylic bromides was shown

to be useful for carbon-carbon bond formation by CoI in the absence of oxygen, resulting in the convenient synthesis of a
variety of functionalized benzylic dimers suitable for new spacers in molecular recognition research (Goswami & Mahapatra
1998; Goswami et al., 1989). We report here a useful and straightforward procedure for the synthesis of 1,2-di-(2-quinolyl)-
ethylene from 2,2-dichloromethyl quinoline.

The title compound, Fig. 1, comprises two crystallographically independent centrosymmetric molecules with different
conformations due to the disorder over two sites, corresponding to a ca180° rotation about the C9B—C10B bond. The minor
component of the disordered part in B has the same configuration as molecule A, but the major component is different.
The difference in conformation is that the A molecule atoms N1A-C9A-C10A-C10AA (AA is the symmetry related of A),
form a chain like U shape while the corresponding atoms in the major component of B form a Z shape. The dihedral angle
between the plane of molecule A and molecule B is 63.22 (3)°. In molecule B, the whole molecule is disordered over two
positions with a site-occupancy factor of 0.780 (6)/0.220 (6). The crystal structure is stabilized by intermolecular C—H···π

interactions (C2A—H2AA···Cg1i, C6A—H6AA···Cg2ii, C4B—H4B···Cg3iii, and C6A—H6AA···Cg3iv: (i) 1/2 - X, 1/2 +
Y, 1/2 - Z; (ii) -1/2 + X, 1/2 - Y, 1/2 + Z; (iii) 1/2 + X, 3/2 - Y, 1/2 + Z; (iv) 1/2 - X, -3/2 + Y, 1/2 - Z; Cg1, Cg2 and Cg3 are
the centroids of the C3A–C8A, N1B/C8B/C3B/C2B/C1B/C9B and N1C/C8C/C3C/C2C/C1C/C9C aromatic rings).

Experimental

2,2-dichloromethyl quinoline (1 mmol) was dissolved in dry benzene (25 mL). The anhydrous green colored CoI(PPh3)3Cl

(2.5 mmol) catalyst was added to the reaction mixture with stirring at room temperature under a nitrogen atmosphere. After
30 minutes, the color of the reaction mixture had changed from green to blue. The reaction mixture was then heated under
reflux conditions for 2-3 h. The solvent was evaporated to dryness, the residue was worked up with water and the organic
part was extracted with chloroform. The organic layer was dried (Na2SO4) and concentrated. Column chromatography of the

crude product on silica gel and elution with methanol in chloroform afforded 1,2-di-(2-quinolyl)-ethylene. Single crystals
suitable for X-ray diffraction were grown by slow evaporation of a CHCl3-methanol (1:1) solution of the title compound.

Refinement

All of the hydrogen atoms were positioned geometrically and constrained to refine with the parent atoms with C—H = 0.96 Å
and Uiso (H) = 1.2 Ueq (C). The whole molecule B is disordered by a 180° rotation over two positions with a site- occupancy

http://dx.doi.org/10.1107/S160053680900186X
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Fun,%20H.-K.
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factor of 0.780 (6)/0.220 (6). For the minor component, only isotropic refinement was used. Initially rigid, similarity and
simulation restraints were applied to molecule B. After steady state has been reached, these restraints were removed for the
final refinement. There is no restraint used in the final refinement.

Figures

Fig. 1. The molecular structure showing 40% probability displacement ellipsoids and the
atomic numbering. Open bonds indicate the minor component [symmetry code for C: -x + 1,
-y + 2, -z and symmetry code for unlabelled atoms -x, -y, -z].

Fig. 2. Crystal packing of viewed down the b-axis showing linking of molecules by inter-
molecular C—H···π interactions. Inermolecular interactions are drawn as dashed lines. Only
the major component of the disordered molecule is shown.

1,2-Di-2-quinolylethene

Crystal data

C20H14N2 F000 = 592

Mr = 282.33 Dx = 1.296 Mg m−3

Monoclinic, P21/n Mo Kα radiation
λ = 0.71073 Å

Hall symbol: -P 2yn Cell parameters from 3767 reflections
a = 15.6378 (2) Å θ = 2.7–31.5º
b = 6.0798 (1) Å µ = 0.08 mm−1

c = 16.0860 (2) Å T = 100.0 (1) K
β = 108.879 (1)º Block, yellow

V = 1447.10 (4) Å3 0.34 × 0.33 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector
diffractometer 3317 independent reflections

Radiation source: fine-focus sealed tube 2476 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030

T = 100.0(1) K θmax = 27.5º

φ and ω scans θmin = 1.6º
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Absorption correction: multi-scan
(SADABS; Bruker, 2005) h = −20→20

Tmin = 0.863, Tmax = 0.993 k = −7→6
12910 measured reflections l = −20→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring
sites

Least-squares matrix: full H-atom parameters constrained

R[F2 > 2σ(F2)] = 0.040
  w = 1/[σ2(Fo

2) + (0.0416P)2 + 0.3849P]
where P = (Fo

2 + 2Fc
2)/3

wR(F2) = 0.102 (Δ/σ)max < 0.001

S = 1.04 Δρmax = 0.25 e Å−3

3317 reflections Δρmin = −0.17 e Å−3

245 parameters
Extinction correction: SHELXTL (Sheldrick, 2008),
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Primary atom site location: structure-invariant direct
methods Extinction coefficient: 0.0035 (10)

Secondary atom site location: difference Fourier map

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The
cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds
in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used
for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculat-

ing R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice
as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1A 0.07166 (7) 0.04930 (18) 0.16586 (7) 0.0216 (3)
C1A 0.10529 (8) 0.3931 (2) 0.10857 (9) 0.0246 (3)
H1AA 0.1003 0.4797 0.0596 0.030*
C2A 0.14983 (8) 0.4706 (2) 0.19043 (9) 0.0247 (3)
H2AA 0.1749 0.6108 0.1977 0.030*
C3A 0.15781 (8) 0.3371 (2) 0.26439 (8) 0.0215 (3)
C4A 0.20530 (8) 0.4010 (2) 0.35202 (9) 0.0263 (3)
H4AA 0.2318 0.5395 0.3631 0.032*
C5A 0.21245 (8) 0.2605 (2) 0.42038 (9) 0.0281 (3)
H5AA 0.2442 0.3033 0.4776 0.034*
C6A 0.17178 (9) 0.0509 (2) 0.40428 (9) 0.0281 (3)
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H6AA 0.1770 −0.0437 0.4511 0.034*
C7A 0.12485 (8) −0.0149 (2) 0.32079 (9) 0.0248 (3)
H7AA 0.0977 −0.1528 0.3114 0.030*
C8A 0.11711 (8) 0.1247 (2) 0.24836 (8) 0.0201 (3)
C9A 0.06639 (8) 0.1799 (2) 0.09801 (8) 0.0218 (3)
C10A 0.01868 (8) 0.0993 (2) 0.00925 (8) 0.0232 (3)
H10A 0.0142 0.1934 −0.0375 0.028*
N1B 0.69538 (18) 0.8831 (3) 0.07847 (10) 0.0206 (5) 0.780 (6)
C1B 0.57855 (14) 0.6355 (5) 0.08990 (15) 0.0210 (5) 0.780 (6)
H1B 0.5174 0.6104 0.0801 0.025* 0.780 (6)
C2B 0.6415 (3) 0.4802 (7) 0.1311 (3) 0.0247 (9) 0.780 (6)
H2B 0.6231 0.3476 0.1486 0.030* 0.780 (6)
C3B 0.7367 (3) 0.5221 (6) 0.1476 (2) 0.0161 (7) 0.780 (6)
C4B 0.8065 (3) 0.3683 (7) 0.1894 (3) 0.0215 (9) 0.780 (6)
H4B 0.7918 0.2321 0.2072 0.026* 0.780 (6)
C5B 0.89117 (17) 0.4192 (6) 0.20252 (17) 0.0241 (6) 0.780 (6)
H5B 0.9360 0.3167 0.2284 0.029* 0.780 (6)
C6B 0.91586 (16) 0.6283 (5) 0.17789 (16) 0.0236 (6) 0.780 (6)
H6B 0.9765 0.6623 0.1891 0.028* 0.780 (6)
C7B 0.8505 (2) 0.7811 (4) 0.13753 (16) 0.0219 (5) 0.780 (6)
H7B 0.8670 0.9174 0.1213 0.026* 0.780 (6)
C8B 0.7575 (3) 0.7292 (7) 0.1208 (2) 0.0182 (7) 0.780 (6)
C9B 0.6082 (2) 0.8361 (4) 0.06227 (11) 0.0192 (5) 0.780 (6)
C10B 0.54504 (13) 1.0039 (3) 0.01229 (11) 0.0208 (6) 0.780 (6)
H10B 0.5703 1.1285 −0.0039 0.025* 0.780 (6)
N1C 0.3376 (6) 1.1411 (12) −0.0755 (4) 0.0140 (16)* 0.220 (6)
C1C 0.4292 (7) 1.4289 (18) −0.1047 (6) 0.026 (2)* 0.220 (6)
H1C 0.4870 1.4748 −0.1013 0.031* 0.220 (6)
C2C 0.3606 (11) 1.556 (3) −0.1416 (11) 0.014 (3)* 0.220 (6)
H2C 0.3687 1.6944 −0.1628 0.017* 0.220 (6)
C3C 0.2813 (9) 1.486 (2) −0.1479 (10) 0.011 (3)* 0.220 (6)
C4C 0.2057 (13) 1.604 (3) −0.1817 (12) 0.024 (4)* 0.220 (6)
H4C 0.2120 1.7485 −0.1976 0.029* 0.220 (6)
C5C 0.1046 (7) 1.515 (2) −0.1969 (7) 0.020 (3)* 0.220 (6)
H5C 0.0529 1.5947 −0.2263 0.025* 0.220 (6)
C6C 0.1025 (8) 1.3099 (17) −0.1622 (6) 0.022 (2)* 0.220 (6)
H6C 0.0474 1.2482 −0.1645 0.026* 0.220 (6)
C7C 0.1792 (8) 1.197 (2) −0.1248 (6) 0.026 (3)* 0.220 (6)
H7C 0.1743 1.0569 −0.1035 0.031* 0.220 (6)
C8C 0.2620 (12) 1.271 (4) −0.1160 (13) 0.030 (5)* 0.220 (6)
C9C 0.4178 (6) 1.2225 (17) −0.0697 (5) 0.0172 (18)* 0.220 (6)
C10C 0.4987 (5) 1.0882 (12) −0.0238 (4) 0.023 (2)* 0.220 (6)
H10C 0.5533 1.1342 −0.0294 0.028* 0.220 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

N1A 0.0207 (5) 0.0220 (6) 0.0214 (6) 0.0007 (4) 0.0058 (4) −0.0004 (5)
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C1A 0.0220 (6) 0.0249 (7) 0.0272 (7) 0.0016 (5) 0.0083 (5) 0.0051 (6)
C2A 0.0214 (6) 0.0195 (7) 0.0330 (8) −0.0017 (5) 0.0084 (6) −0.0009 (6)
C3A 0.0174 (6) 0.0220 (7) 0.0253 (7) 0.0022 (5) 0.0072 (5) −0.0030 (5)
C4A 0.0227 (6) 0.0248 (7) 0.0301 (8) 0.0003 (5) 0.0068 (5) −0.0085 (6)
C5A 0.0248 (7) 0.0365 (8) 0.0213 (7) 0.0032 (6) 0.0052 (5) −0.0089 (6)
C6A 0.0282 (7) 0.0344 (8) 0.0222 (7) 0.0036 (6) 0.0088 (5) 0.0023 (6)
C7A 0.0250 (7) 0.0245 (7) 0.0251 (7) −0.0009 (5) 0.0083 (5) 0.0005 (6)
C8A 0.0163 (6) 0.0215 (7) 0.0226 (7) 0.0012 (5) 0.0064 (5) −0.0013 (5)
C9A 0.0189 (6) 0.0225 (7) 0.0236 (7) 0.0022 (5) 0.0065 (5) 0.0017 (5)
C10A 0.0214 (6) 0.0265 (7) 0.0209 (7) 0.0029 (5) 0.0058 (5) 0.0034 (6)
N1B 0.0168 (11) 0.0220 (9) 0.0217 (8) −0.0001 (7) 0.0045 (7) 0.0001 (6)
C1B 0.0193 (9) 0.0226 (15) 0.0203 (10) −0.0011 (9) 0.0051 (7) −0.0014 (10)
C2B 0.0308 (15) 0.0216 (19) 0.0228 (16) −0.0083 (12) 0.0103 (11) −0.0013 (13)
C3B 0.0110 (15) 0.0222 (13) 0.0160 (11) −0.0003 (12) 0.0056 (11) −0.0020 (7)
C4B 0.0253 (17) 0.0185 (15) 0.0189 (14) 0.0117 (12) 0.0048 (11) 0.0069 (10)
C5B 0.0255 (12) 0.0219 (15) 0.0244 (11) 0.0049 (11) 0.0074 (8) 0.0034 (11)
C6B 0.0194 (11) 0.0273 (14) 0.0233 (11) 0.0025 (11) 0.0057 (8) 0.0023 (10)
C7B 0.0179 (13) 0.0234 (11) 0.0258 (11) −0.0020 (11) 0.0089 (10) −0.0010 (9)
C8B 0.022 (2) 0.0188 (13) 0.0133 (12) 0.0004 (14) 0.0051 (12) −0.0022 (7)
C9B 0.0188 (11) 0.0192 (11) 0.0195 (9) −0.0017 (9) 0.0061 (8) −0.0012 (7)
C10B 0.0214 (11) 0.0190 (10) 0.0214 (9) −0.0012 (7) 0.0061 (7) 0.0009 (7)

Geometric parameters (Å, °)

N1A—C9A 1.3307 (16) C4B—H4B 0.9300
N1A—C8A 1.3661 (15) C5B—C6B 1.422 (4)
C1A—C2A 1.3592 (18) C5B—H5B 0.9300
C1A—C9A 1.4183 (18) C6B—C7B 1.378 (3)
C1A—H1AA 0.9300 C6B—H6B 0.9300
C2A—C3A 1.4118 (18) C7B—C8B 1.426 (5)
C2A—H2AA 0.9300 C7B—H7B 0.9300
C3A—C4A 1.4183 (17) C9B—C10B 1.466 (3)
C3A—C8A 1.4259 (18) C10B—C10Bii 1.335 (4)
C4A—C5A 1.3683 (19) C10B—H10B 0.9300
C4A—H4AA 0.9300 N1C—C9C 1.324 (9)
C5A—C6A 1.411 (2) N1C—C8C 1.40 (2)
C5A—H5AA 0.9300 C1C—C2C 1.30 (2)
C6A—C7A 1.3652 (18) C1C—C9C 1.410 (10)
C6A—H6AA 0.9300 C1C—H1C 0.9300
C7A—C8A 1.4146 (18) C2C—C3C 1.28 (2)
C7A—H7AA 0.9300 C2C—H2C 0.9300
C9A—C10A 1.4650 (17) C3C—C4C 1.34 (2)

C10A—C10Ai 1.332 (3) C3C—C8C 1.47 (3)
C10A—H10A 0.9300 C4C—C5C 1.61 (2)
N1B—C9B 1.333 (3) C4C—H4C 0.9300
N1B—C8B 1.362 (5) C5C—C6C 1.371 (13)
C1B—C2B 1.370 (5) C5C—H5C 0.9300
C1B—C9B 1.426 (3) C6C—C7C 1.344 (11)
C1B—H1B 0.9300 C6C—H6C 0.9300
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C2B—C3B 1.448 (6) C7C—C8C 1.335 (18)
C2B—H2B 0.9300 C7C—H7C 0.9300
C3B—C8B 1.403 (6) C9C—C10C 1.486 (11)
C3B—C4B 1.429 (5) C10C—C10Cii 1.311 (15)
C4B—C5B 1.308 (6) C10C—H10C 0.9300

C9A—N1A—C8A 118.11 (11) C7B—C6B—C5B 120.5 (2)
C2A—C1A—C9A 119.88 (12) C7B—C6B—H6B 119.8
C2A—C1A—H1AA 120.1 C5B—C6B—H6B 119.8
C9A—C1A—H1AA 120.1 C6B—C7B—C8B 119.7 (2)
C1A—C2A—C3A 119.68 (12) C6B—C7B—H7B 120.2
C1A—C2A—H2AA 120.2 C8B—C7B—H7B 120.2
C3A—C2A—H2AA 120.2 N1B—C8B—C3B 124.8 (4)
C2A—C3A—C4A 123.73 (12) N1B—C8B—C7B 117.5 (3)
C2A—C3A—C8A 117.09 (11) C3B—C8B—C7B 117.7 (3)
C4A—C3A—C8A 119.16 (12) N1B—C9B—C1B 122.53 (17)
C5A—C4A—C3A 120.54 (13) N1B—C9B—C10B 115.0 (2)
C5A—C4A—H4AA 119.7 C1B—C9B—C10B 122.4 (2)
C3A—C4A—H4AA 119.7 C10Bii—C10B—C9B 126.7 (2)

C4A—C5A—C6A 120.12 (12) C10Bii—C10B—H10B 116.7
C4A—C5A—H5AA 119.9 C9B—C10B—H10B 116.7
C6A—C5A—H5AA 119.9 C9C—N1C—C8C 117.5 (11)
C7A—C6A—C5A 120.80 (13) C2C—C1C—C9C 121.4 (10)
C7A—C6A—H6AA 119.6 C2C—C1C—H1C 119.3
C5A—C6A—H6AA 119.6 C9C—C1C—H1C 119.3
C6A—C7A—C8A 120.67 (13) C3C—C2C—C1C 118.0 (14)
C6A—C7A—H7AA 119.7 C3C—C2C—H2C 121.0
C8A—C7A—H7AA 119.7 C1C—C2C—H2C 121.0
N1A—C8A—C7A 118.54 (12) C2C—C3C—C4C 123.7 (16)
N1A—C8A—C3A 122.77 (12) C2C—C3C—C8C 124.9 (14)
C7A—C8A—C3A 118.69 (11) C4C—C3C—C8C 111.4 (14)
N1A—C9A—C1A 122.47 (12) C3C—C4C—C5C 125.1 (14)
N1A—C9A—C10A 118.44 (12) C3C—C4C—H4C 117.5
C1A—C9A—C10A 119.09 (12) C5C—C4C—H4C 117.5

C10Ai—C10A—C9A 124.71 (15) C6C—C5C—C4C 113.2 (10)

C10Ai—C10A—H10A 117.6 C6C—C5C—H5C 123.4
C9A—C10A—H10A 117.6 C4C—C5C—H5C 123.4
C9B—N1B—C8B 118.0 (3) C7C—C6C—C5C 120.8 (11)
C2B—C1B—C9B 119.0 (2) C7C—C6C—H6C 119.6
C2B—C1B—H1B 120.5 C5C—C6C—H6C 119.6
C9B—C1B—H1B 120.5 C8C—C7C—C6C 124.7 (14)
C1B—C2B—C3B 120.2 (3) C8C—C7C—H7C 117.7
C1B—C2B—H2B 119.9 C6C—C7C—H7C 117.7
C3B—C2B—H2B 119.9 C7C—C8C—N1C 120.2 (18)
C8B—C3B—C4B 120.9 (4) C7C—C8C—C3C 124.4 (16)
C8B—C3B—C2B 115.4 (4) N1C—C8C—C3C 115.3 (14)
C4B—C3B—C2B 123.7 (4) N1C—C9C—C1C 122.9 (8)
C5B—C4B—C3B 120.0 (4) N1C—C9C—C10C 117.7 (9)
C5B—C4B—H4B 120.0 C1C—C9C—C10C 119.3 (9)
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C3B—C4B—H4B 120.0 C10Cii—C10C—C9C 126.9 (9)

C4B—C5B—C6B 121.2 (3) C10Cii—C10C—H10C 116.6
C4B—C5B—H5B 119.4 C9C—C10C—H10C 116.6
C6B—C5B—H5B 119.4

C9A—C1A—C2A—C3A 0.64 (18) C2B—C3B—C8B—N1B −2.9 (5)
C1A—C2A—C3A—C4A 178.00 (12) C4B—C3B—C8B—C7B −0.6 (5)
C1A—C2A—C3A—C8A −0.46 (17) C2B—C3B—C8B—C7B 178.5 (3)
C2A—C3A—C4A—C5A −178.12 (12) C6B—C7B—C8B—N1B −178.1 (2)
C8A—C3A—C4A—C5A 0.32 (18) C6B—C7B—C8B—C3B 0.6 (4)
C3A—C4A—C5A—C6A −0.58 (19) C8B—N1B—C9B—C1B 2.0 (3)
C4A—C5A—C6A—C7A −0.06 (19) C8B—N1B—C9B—C10B −176.8 (2)
C5A—C6A—C7A—C8A 0.96 (19) C2B—C1B—C9B—N1B −3.1 (3)
C9A—N1A—C8A—C7A −178.59 (11) C2B—C1B—C9B—C10B 175.6 (3)
C9A—N1A—C8A—C3A 0.75 (17) N1B—C9B—C10B—C10Bii 179.9 (2)

C6A—C7A—C8A—N1A 178.17 (11) C1B—C9B—C10B—C10Bii 1.1 (3)
C6A—C7A—C8A—C3A −1.20 (18) C9C—C1C—C2C—C3C −2(2)
C2A—C3A—C8A—N1A −0.24 (17) C1C—C2C—C3C—C4C 177.6 (16)
C4A—C3A—C8A—N1A −178.78 (11) C1C—C2C—C3C—C8C 0(3)
C2A—C3A—C8A—C7A 179.10 (11) C2C—C3C—C4C—C5C 175.5 (15)
C4A—C3A—C8A—C7A 0.56 (17) C8C—C3C—C4C—C5C −7(2)
C8A—N1A—C9A—C1A −0.58 (17) C3C—C4C—C5C—C6C 7(2)
C8A—N1A—C9A—C10A 179.29 (10) C4C—C5C—C6C—C7C −3.8 (16)
C2A—C1A—C9A—N1A −0.11 (19) C5C—C6C—C7C—C8C 2(2)
C2A—C1A—C9A—C10A −179.98 (11) C6C—C7C—C8C—N1C 179.5 (11)

N1A—C9A—C10A—C10Ai −1.6 (2) C6C—C7C—C8C—C3C −1(3)

C1A—C9A—C10A—C10Ai 178.32 (15) C9C—N1C—C8C—C7C 179.2 (13)
C9B—C1B—C2B—C3B 1.1 (5) C9C—N1C—C8C—C3C 0.2 (19)
C1B—C2B—C3B—C8B 1.6 (6) C2C—C3C—C8C—C7C −178.3 (17)
C1B—C2B—C3B—C4B −179.3 (4) C4C—C3C—C8C—C7C 4(3)
C8B—C3B—C4B—C5B −0.5 (6) C2C—C3C—C8C—N1C 1(2)
C2B—C3B—C4B—C5B −179.5 (4) C4C—C3C—C8C—N1C −176.8 (15)
C3B—C4B—C5B—C6B 1.6 (6) C8C—N1C—C9C—C1C −2.0 (15)
C4B—C5B—C6B—C7B −1.5 (4) C8C—N1C—C9C—C10C 177.9 (10)
C5B—C6B—C7B—C8B 0.3 (4) C2C—C1C—C9C—N1C 3.2 (16)
C9B—N1B—C8B—C3B 1.1 (4) C2C—C1C—C9C—C10C −176.7 (11)
C9B—N1B—C8B—C7B 179.8 (2) N1C—C9C—C10C—C10Cii −11.3 (12)

C4B—C3B—C8B—N1B 178.1 (3) C1C—C9C—C10C—C10Cii 168.6 (9)
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A

C2A—H2AA···Cg1iii 0.93 2.77 3.3409 (14) 121

C6A—H6AA···Cg2iv 0.93 2.65 3.5328 (18) 159

C4B—H4B···Cg3v 0.93 2.85 3.376 (12) 116

C6A—H6AA···Cg3vi 0.93 2.76 3.613 (10) 152
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Symmetry codes: (iii) −x+1/2, y+1/2, −z+1/2; (iv) x−3/2, −y−1/2, z−1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) −x+1/2, y−3/2, −z+1/2.

Fig. 1
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Fig. 2


